Spatial variation and detection of COVID-19 hotspots in Panama: an analysis based on census data
Main Article Content
Keywords
COVID-19, Spatial Analysis, Risk Areas, Geoepidemiology, Panama
Abstract
COVID-19, an infectious disease of zoonotic origin, has spread globally, significantly impacting Panama. Identifying risk areas (hotspots) using geoepidemiological techniques is essential for implementing effective control measures. Objective: To conduct a spatial analysis of the COVID-19 epidemic in Panama using recent census data to better understand the virus's distribution characteristics and explore its geographic patterns, particularly spatial clustering. Materials and Methods: Data from the 2023 Population and Housing Census of Panama were used, which included information on COVID-19 incidence in households and household size to calculate the COVID-19 rate. The 82 districts of Panama were geocoded for the study. Statistical analyses were conducted using GEODA, applying the global Moran's I, Getis-Ord GI* local hotspot analysis, and Local Indicators of Spatial Association (LISA) to detect COVID-19 risk clusters. Maps were generated using R. Results: The COVID-19 rate showed spatial clustering in Panama's districts (Moran's I=0.672, p=0.001). Significant local clusters were identified in six districts of Herrera province: Chitré (GI*=0.022, LISA=2.34, p=0.011), Santa María (GI*=0.02, LISA=1.07, p=0.02), Pesé (GI*=0.02, LISA=1.12, p=0.002), Parita (GI*=0.021, LISA=1.11, p=0.003), Los Pozos (GI*=0.017, LISA=0.52, p=0.038) and Ocú (GI*=0.018, LISA=0.54, p=0.013); seven districts in Los Santos province: Las Tablas (GI*=0.022, LISA=2.23, p=0.002), Macaracas (GI*=0.021, LISA=1.97, p=0.001), Guararé (GI*=0.023, LISA=2.38, p=0.001), Pedasí (GI*=0.022, LISA=1.87, p=0.005), Los Santos (GI*=0.023, LISA=2.19, p=0.001), Pocrí (GI*=0.022, LISA=1.88, p=0.014) and Tonosí (GI*=0.02, LISA=1.14, p=0.008); and Mariato in Veraguas (GI*=0.017, p=0.024). Conclusion: The distribution of COVID-19 exhibits specific geographic patterns based on spatial clustering. These findings suggest that identified areas should be prioritized for virus control and prevention measures for COVID-19 and similar future outbreaks.
References
2. Chakraborty C, Lee S-S, Sharma A, Bhattacharya M, Sharma G. The 2019 novel coronavirus disease (COVID-19) pandemic: A zoonotic prospective. Asian Pac J Trop Med [Internet]. 2020;13(6):242. Doi: 10.4103/1995-7645.281613
3. Contini C, Di Nuzzo M, Barp N, Bonazza A, De Giorgio R, Tognon M, et al. The novel zoonotic COVID-19 pandemic: An expected global health concern. J Infect Dev Ctries [Internet]. 2020;14(3):254–64. Doi: 10.3855/jidc.12671
4. Evans R, Bonilla R, Salvatierra R, González L. Una Pandemia en Perspectiva 100. Universidad Hispanoamericana [Internet]. 2022 [Consultado 15 marzo 2024]. Disponible en: https://uh.ac.cr/investigaciones/detalle/una-pandemia-en-perspectiva-100-
5. Lai Y-J, Chang C-M, Lin C-K, Yang Y-P, Chien C-S, Wang P-H, et al. Severe acute respiratory syndrome coronavirus-2 and the deduction effect of angiotensin-converting enzyme 2 in pregnancy. J Chin Med Assoc [Internet]. 2020;83(9):812–6. Doi: 10.1097/JCMA.0000000000000362
6. Goubar A, Bitar D, Cao WC, Feng D, Fang LQ, Desenclos JC. An approach to estimate the number of SARS cases imported by international air travel. Epidemiol Infect [Internet]. 2009;137(7):1019–31. Disponible en: http://dx.doi.org/10.1017/S0950268808001635
7. Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, et al. Clinical characteristics of 2019 novel coronavirus infection in China [Internet]. bioRxiv. 2020. Disponible en: http://dx.doi.org/10.1101/2020.02.06.20020974
8. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet [Internet]. 2020;395(10223):497–506. Disponible en: http://dx.doi.org/10.1016/S0140-6736(20)30183-5
9. Posid JM, Bruce SM, Guarnizo JT, Taylor ML, Garza BW. SARS: Mobilizing and maintaining a public health emergency response. J Public Health Manag Pract [Internet]. 2005;11(3):208–15. Doi: 10.1097/00124784-200505000-00005
10. Tam T. Fifteen years post-SARS: Key milestones in Canada’s public health emergency response. Can Commun Dis Rep [Internet]. 2018;44(5):98–101. Doi: 10.14745/ccdr.v44i05a01
11. Velavan TP, Meyer CG. The COVID-19 epidemic. Trop Med Int Health [Internet]. 2020;25(3):278–80. Doi: 10.1111/tmi.13383
12. Zhang H, Liu Y, Chen F, Mi B, Zeng L, Pei L. The effect of sociodemographic factors on COVID-19 incidence of 342 cities in China: a geographically weighted regression model analysis. BMC Infect Dis [Internet]. 2021;21(1):428. Doi: 10.1186/s12879-021-06128-1
13. Ministerio de Salud (MINSA). Panamá confirma primer caso de COVID-19. [Internet]. 2020 [Consultado 16 marzo 2024]. Disponible en: http://www.minsa.gob.pa
14. TVN Canal 14. Panamá decreta estado de emergencia por coronavirus. [Internet]. 2020 [Consultado 16 marzo 2024]. Disponible en: https://www.tvn14.com/
15. La Estrella de Panamá. Casos de Covid-19 en Panamá siguen a la baja; se reportan dos nuevos fallecidos. [Internet]. 2023 [Consultado 16 marzo 2024]. Disponible en: https://www.laestrella.com.pa/
16. Datosmacro.com. Panamá COVID-19 Crisis del coronavirus 2023. [Internet]. 2023 [Consultado 16 marzo 2024]. Disponible en: https://datosmacro.expansion.com
17. Rivera-Gutiérrez R de J, Ramírez M, Rodríguez A, Hernández J. COVID-19 en Panamá y el Mundo: Una revisión de la literatura. Rev Med Cient [Internet]. 2021 [Consultado 17 marzo 2024];32(1):37-60. Disponible en: https://revistamedicocientifica.org/index.php/rmc/article/view/553
18. Instituto Geográfico Nacional. Servicios OGC. [Internet]. 2024 [Consultado 30 marzo 2024]. Disponible en: https://www.snitcr.go.cr/
19. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2021. Disponible en: https://www.R-project.org
20. Instituto Nacional de Estadística y Censos. Censos Nacionales de Población y Vivienda. [Internet]. 2024 [Consultado 30 marzo 2024]. Disponible en: https://www.inec.gob.pa/redpan/index_censospma.html
21. Getis A. Cliff, A.D. & Ord, J.K. Spatial autocorrelation. London: Pion; 1973. Prog Hum Geogr [Internet]. 1995;19(2):245–9. Doi: 10.1177/030913259501900205
22. Anselin L, Ibnu S, Youngihn K. GeoDa: An Introduction to Spatial Data Analysis. Geogr Anal. 2006;38(1):5-22.
23. Anselin L. Local indicators of spatial association—LISA. Geogr Anal [Internet]. 1995;27(2):93–115. Doi: 10.1111/j.1538-4632.1995.tb00338.x
24. Tsai P-J, Lin M-L, Chu C-M, Perng C-H. Spatial autocorrelation analysis of health care hotspots in Taiwan in 2006. BMC Public Health [Internet]. 2009;9(1):464. Doi: 10.1186/1471-2458-9-464
25. Griffith DA. Art, geography/GIScience, and mathematics: A surprising interface. Ann Am Assoc Geogr [Internet]. 2023;113(1):1–12. Doi: 10.1080/24694452.2022.2086101
26. Carozzi F. Urban density and Covid-19. SSRN Electron J [Internet]. 2020. Doi: 10.2139/ssrn.3643204
